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Abstract: Two paste electrodes based on graphene quantum dots and carbon nanotubes (GRQD/CNT)
and one modified with a homoleptic liquid crystalline Cu(I) based coordination complex (Cu/GRQD/
CNT) were obtained and morphostructurally and electrochemically characterized in comparison with
simple CNT electrode (CNT) for doxorubicine (DOX) detection in aqueous solutions. GRQD/CNT
showed the best electroanalytical performance by differential pulse voltammetry technique (DPV).
Moreover, applying a preconcentration step prior to detection stage, the lowest limit of detection
(1 ng/L) and the highest sensitivity (216,105 µA/mg·L−1) in comparison with reported literature data
were obtained. Cu/GRQD/CNT showed good results using multiple pulse amperometry technique
(MPA) and a favorable shifting of the potential detection to mitigate potential interferences. Both
GRQD-based paste electrodes have a great potential for practical utility in DOX determination in wa-
ter at trace concentration levels, using GRQD/CNT with DPV and in pharmaceuticals formulations
using Cu/GRQD/CNT with MPA.

Keywords: graphene quantum dots; liquid crystalline Cu(I) coordination complex; electrochemical
detection; doxorubicine; C-based paste electrodes

1. Introduction

In the last few decades, pharmaceuticals have been saving millions of lives and have
emerged as a new class of environmental contaminant [1–4]. Since 1990, major efforts have
been made to study the risks, occurrence, and fate of human pharmaceuticals (identified
as pseudo-persistent compounds) which are constantly released in the environment [1,4].
These compounds can have both chronic and acute harmful effects on natural flora and
fauna. According to Jureczko, 2020 [2], over six hundred pharmaceuticals were found in
ground waters, surface waters (rivers, lakes, seas), and in soils.

Chemotherapy drugs are a specific group of pharmaceutical compounds used to treat
cancer diseases. They are often called anticancer drugs and have been shown to have potent
cytotoxic, genotoxic, mutagenic, carcinogenic, endocrine disruptor, and/or teratogenic
effects in several organisms, since they have been mainly designed to disrupt or prevent
cellular proliferation, usually by interfering in DNA synthesis [1–6].

Even if in the EU there are no legal standards for the presence of human cytostatic
and cytostatic medical products in water, these compounds belong to emerging pollutants,
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and also, according to the EU Commission Decision 2000/532/EC251, they are included in
European List of Hazardous Waste [2].

Nowadays, there is a lack of information about the occurrence and fate of these sub-
stances in the environment, although their consumption has increased in the last years and
it is foreseen to further increase in the future due the increasing cases of cancers [4,6]. Their
main sources are hospital effluents, household discharge and drug manufacturers. As these
compounds are not removed during wastewater treatment with sufficient efficiency, they
are found in the surface, ground and quite drinking water in concentrations at trace levels
in general, up to 0.2 µg·L−1 [2]. For example, Doxorubicine (DOX), an anthracycline and
anti-cancer chemotherapy drug, which is used in the treatment of various forms of sarcoma
and cancer, including bladder cancer, breast cancer, leukemia, liver cancer, head and neck
cancer, and lung cancer, has been detected in different matrices of water (hospital effluent:
1 × 10−5–1.5 × 10−1 mg·L−1, WWTP effluent < 4.3 × 10−6–4.20 × 10−5 mg·L−1; surface
water <5.3 × 10−6 mg·L−1) [2]. It can be seen that the concentrations data are worrying,
and it is evident that advanced analytical methods have to be developed. Due to the
fact that the majority of analytical methods found in the literature are valid for biological
matrix (blood, urine) [7–9], and not for water matrix, the detection of cytostatic, in special
DOX, is difficult. Until now, several analytical techniques including high-performance
liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LS-MS), mass
spectrometry methods have been developed to detect the trace levels of DOX in different
matrices of water in concentrations up to 1 × 10−7 to 5 × 10−5 mg·L−1 DOX [2]. Al-
though these methods have the advantages of sensitivity and accuracy, their high cost and
complicated operations limit their applications.

Considering the high sensitivity, rapidity, accuracy, simplicity, low cost, ease of on-site
determination, limit of detection at trace levels, the electrochemical methods have received
considerable attention for the analysis of DOX [10–15].

The development of the electrochemical methods and sensing for the quantitative
determination of the analytes address the two main issues regarding the electrochemical
techniques and the electrode materials. In general, the electrochemical analysis is a simple,
cost-effective method to determine the levels of electroactive species quantitatively and
qualitatively in a solution. Advantages of the electroanalytical techniques over other de-
tection methods such as chromatography, luminescence, and spectroscopy are their low
cost, ease of use, accuracy, and reliability. Both advanced voltametric techniques (e.g.,
differential pulse voltammetry-DPV, square-wave voltammetry-SWV) besides the con-
ventional (cyclic voltammetry-CV) and amperometric ones (chronoamperometry-CA and
multiple-pulsed amperometry-MPA) require the optimization of the operating parameters,
depending on the mechanism of the overall electrode process responsible for the detection
response [16–20].

Carbon-based electrode material is very common and useful in electroanalysis but they
are not always appropriate for detection at trace level concentrations due to slower electron
mobility and implicit electrode process kinetics [21,22]. In addition, nanostructured carbon
can be integrated within electrode composition to enhance the electroanalytical detection
performance [17–20].

Graphene quantum dots (GRQD) as novel nanomaterials have received significant
interest in the field of electroanalysis applications. They belong to zero-dimensional and
sp2 hybridization, and are nanometer-sized fragments of graphene [23–25]. GRQD are
superior in chemical inertness, simplicity of production, resistance to photobleaching, are
environmentally friendly due to its non-toxic and biologically properties low cytotoxicity,
and excellent biocompatibility in comparison to traditional semiconductor. Hence, these
advantages make them applicable in sensors, bioimaging, optoelectronic devices, drug
delivery, due to their high specific surface, electrical conductivity, and electrochemical
mobility [24–30].

In order to better enhance the electroanalytical performance, chemically modified
electrodes have been studied recently by our group, including metallic and metallic based
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Cu, Ag nanoparticles [17–20,31–33]. Very interesting behavior and application utility in
sensitive sensing have been reported for homoleptic ionic Cu(I) coordination complex based
on 2,2′-biquinoline ligand functionalized with long alkyl chains (Cu(I)_BF4) integrated
within carbon nanofiber paste electrode [19].

In this study, the development of high performance electrochemical methods centered
on GRQD based electrodes, GRQD integrated CNT paste electrode (GRQD/CNT) and ho-
moleptic ionic Cu(I) coordination complex based on 2,2′-biquinoline ligand functionalized
with long alkyl chains Cu/GRQD integrated CNT paste electrodes (Cu/GRQD/CNT paste
electrode) for the quantitative determination of DOX in aqueous solutions. GRQD/CNT
and CuGRQD/CNT paste electrodes were characterized morpho-structurally and electro-
chemically in comparison with simple CNT electrode. Advanced voltametric techniques,
DPV and SWV, have been optimized to reach the highest sensitivity and the lowest limit
of detection for DOX determination linked to the electrode compositions. To develop
amperometric detection methods, CA and MPA techniques have been tested.

2. Materials and Methods
2.1. Materials

Graphene quantum dots (GRQD) were purchased from Sigma Aldrich (Saint Louis,
MO, USA). Multiwall carbon nanotubes (CNT) synthesized by catalytic carbon vapor
deposition (CCVD) were purchased from NanocylTM, Belgium. Cu(I)_BF4 complex was
prepared as previously reported [34].

Standard stock solution of 1 g·L−1 Doxorubicin (DOX) was prepared daily from
analytical grade Sigma Aldrich reagents using distillated double water. The supporting
electrolyte for the characterization and application of electrode material in detection process
was 0.1 M Na2SO4, and 0.1 M NaOH solutions, which were freshly prepared from Na2SO4,
and NaOH, respectively, of analytical purity (Merck KGaA, Darmstadt, Germany) with
double distillated water.

2.2. Preparation of the Working Paste Electrode

All working paste electrodes were obtained by simple mechanical mixing of certain
amount of graphene quantum dots (GRQD), carbon nanotubes (CNT), homoleptic ionic
Cu(I) coordination complex based on 2,2′-biquinoline ligand functionalized with long alkyl
chains (Cu(I)_BF4) and paraffin oil, according to bellow presented Table 1.

Table 1. The weight ratio of the working paste electrodes.

Paste Electrode
Type

Weight Ratio, %

Paraffin
Oil (oil)

Carbon
Nanotubes

(CNT)

Graphene
Quantum

Dots
(GRQD)

Homoleptic Ionic Cu(I)
Coordination Complex Based

on 2,2′-Biquinoline Ligand
Functionalized with Long

Alkyl Chains (Cu)

CNT 66 44 - -
GRQD/CNT 50 35 15 -

Cu/GRQD/CNT 24.27 6.02 4.24 65

2.3. Structural and Morphological Characterization

A Cary 630 FT-IR spectrophotometer was used to collect Fourier transform infrared
spectroscopy (FTIR) spectra of GRQD/CNT, Cu/GRQD/CNT and CNT in paraffin oil
paste at room temperature in the wavenumber range of 4000–400 cm−1 using transmis-
sion technique. A scanning electronic microscope (SEM, Inspect S PANalytical model)
was used to characterize comparatively the morphological surfaces of GRQD/CNT, and
Cu/GRQD/CNT paste electrode.
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2.4. Electrochemical Experiments

Cyclic voltammetry (CV), differential-pulsed voltammetry (DPV), square-wave voltam-
metry (SWV), chronoamerometry (CA), and multiple-pulsed amperometry (MPA) were car-
ried out using a computer controlled Autolab potentiostat/galvanostat PGSTAT 302N (Eco-
Chemie, Utrecht, The Netherlands) controlled with Nova 2.4 software connected to a three-
electrode cell consisting of a GRQD/CNT paste working electrode, and Cu/GRQD/CNT
paste working electrode, a platinum counter electrode, and silver/silver chloride reference
electrode (Ag/AgCl, KCl 3M).

The lowest limit of detection (LOD) was calculated using the equation: LOD = 3 SD/m
and LQ = 10 SD/m, where SD is the standard deviation of three blanks and m is the slope
of the analytical plots [35]. The reproducibility, (the relative standard deviation (RSD)) of
the electrodes using the above-mentioned technique was evaluated for three replicates
measurements of DOX detection.

3. Results and Discussion
3.1. Morphological Characterization

Figure 1a,b show the SEM images of the GRQD/CNT and Cu/GRQD/CNT pastes.
Even if the content of graphene quantum dots (GRQD) is lower in comparison with CNT,
the presence of GRQD cover the interconnected tubular structure of CNT and a porous
morphology is noticed (Figure 1a). The integration of a much larger amount of homoleptic
ionic Cu(I) coordination complex based on 2,2′-biquinoline ligand functionalized with long
alkyl chains (Cu(I)_BF4) within GRQD and CNT in the paste using paraffin oil is seen
clearly by flakes-like lighter structure (Figure 1b).
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Figure 1. Scanning electron microscopy (SEM) images of: (a): GRQD/CNT; (b): Cu/GRQD/CNT.

The spectra of CNT and GRQD/CNT is dominated by the intense vibrations of
aliphatic -CH3 and -CH2 groups of the paraffinic oil (See Figure S1a,b in Supplementary
Materials): C–H stretching at 2857 and 2945 cm−1, C-H bending at 1457 and 1376 cm−1 and
the rocking band at 721 cm−1, overlapping and strongly weakening the principal bands
of the C-based materials (1580–1530 cm−1 (C-sp2) and 1200–1100 cm−1 (assigned to C=C
bond from the CNT skeletal vibration mode) [36].

The FT-IR spectra of the pristine complex Cu_BF4, paste electrode Cu/GRQD/CNT
and polarized Cu/GRQD/CNT electrode are presented in Supplementary Materials
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(Figure S2). The spectra are overlapping on the whole IR region except for the 1610–
1400 cm−1 region (Figure 2a), where the relative intensities corresponding to some bands
assigned to C=C and/or C=N ring stretch vibration [37] are changing, suggesting a mod-
ification of the skeletal ring of the biquinoline ligand. This can be explained by a slight
distortion of the complex structure when physically mixed with the C-based materials
and paraffin oil, suggesting some kind of weak interactions between the complex and the
functional groups on CNT and GRQD.
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Figure 2. (a) 1650–1400 region of FT-IR spectra of Cu(I)_BF4, paste electrode Cu/GRQD/ CNT and polarized 
Cu/GRQD/ CNT; (b) 1650–1400 region of FT-IR spectra of complex Cu(I), thermally ordered complex Cu(I) and 
paste electrode Cu/GRQD/CNT. 
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Cu(I)_BF4 complex is a liquid crystalline material, whose synthesis and characteri-
zation was reported previously [34]. When thermally ordered into mesophase from the
pristine solid, similar distortions occur, caused by the closed-packing of the molecules into
columnar structures, packing forces exerting a considerable influence on the molecular
geometry of Cu(I) complexes bis-chelated with NˆN-type ligands [38]. The modifications
of the same bands in the FT-IR spectra of thermally ordered Cu(I)_BF4 with respect to the
pristine solid showed in Figure 2b, strongly support the proposed distortions of the Cu(I)
complex geometry in the paste electrode.

Moreover, after polarization the same region shows further alteration, with some
small shift of the peaks maxima towards higher wavenumbers that can be caused by a
further distortion and/or partial oxidation of copper center, with a partial recovery of the
free ligand (Figure 2a).

3.2. Electrochemical Behavior of Carbon-Based Electrodes in the Presence of Supporting Electrolyte
and 5 mg·L−1 DOX

The electrochemical behaviors of the Cu(I)_BF4 liquid crystal/graphene quantum
dots/carbon nanotubes (Cu/GRQD/CNT), graphene quantum dots/ carbon nanotubes
(GRQD/CNT) paste electrodes in comparison with carbon nanotubes (CNT) paste elec-
trodes was studied by CV in 0.1 M Na2SO4 supporting electrolyte and 5 mg·L−1 DOX
(Figure 3a).

It can be easily seen that in the absence of DOX, the background current as a capacitive
current attributed to the electric double layer is much higher for GRQD/CNT in compar-
ison with CNT electrode. The introduction of a liquid crystalline coordination complex
based on Cu(I) metal center, Cu(I)_BF4, within the electrode composition by replacement
of the corresponding GRQD significantly decreased its background in comparison with
GRQD/CNT paste electrode, but it is still larger in comparison with CNT paste electrode.
This behavior is attributed to the excellent properties of GRQD related the specific surface
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area, electrical conductivity, and electrocatalytic activity. It is noticed that several electroox-
idation and electroreduction processes occurred on the GRQD, due to different interactions
and physical connections between the active components from the paste electrode. The
electrooxidation processes were noticed also on the Cu/GRQD/CNT and CNT paste elec-
trodes at different potential values, higher for the CNT paste electrode in relation with the
carbon structure and specific characteristics (0D-graphene quantum dots and 1D- CNT).
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V·s−1; potential range from −1 to +1.5 V/Ag/ AgCl. 
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The electrochemical behavior of DOX onto the carbon-based electrodes showed the
anodic peak attributed to DOX electrooxidation and the corresponding cathodic peak of the
reduction process of DOX, which is noticed during the reverse scanning to cathodic range.
It is observed that the DOX oxidation process started earlier onto the Cu/GRQD/CNT
in comparison with GRQD/CNT and CNT paste electrode, which informs about an elec-
trocatalytic effect towards to the DOX oxidation obtained probably due to the synergism
between the Cu_BF4 and the C-based materials forming the paste electrode (see FT-IR
results). On the other hand, the highest anodic peak height was achieved for GRQD/CNT
paste electrode that is linked to the electrocatalytic effect and larger background current.

Considering in situ obtaining of copper oxides during scanning voltammetry running
in alkaline medium [39], the comparative electrochemical behavior of Cu/GRQD/CNT
paste electrode in 0.1 M Na2SO4 and 0.1 M NaOH supporting electrolytes was studied
and the results are presented in Figure 3b. The anodic peak attributed to the first stage
of copper oxidation is evidenced at the potential value of about +0.230 V vs. Ag/AgCl in
alkaline medium in according with the literature data [39], which did not appear in 0.1 M
Na2SO4 supporting electrolyte. Taking into account the better electrocatalytic activity of
the copper oxides vs. copper ions, the alkaline medium is chosen for further applications
of Cu/GRQD/CNT paste electrode for DOX detection.

To evidence the response of each electrode to DOX concentration increasing, CVs
were recorded in 0.1 M Na2SO4 supporting electrolyte for GRQD/CNT and CNT paste
electrodes and in 0.1 M NaOH supporting electrolyte for Cu/GRQD/CNT paste electrode.

The electrochemical behavior of DOX that contains a quinone and a hydroquinone
functional groups confers it the possibility to be electrooxidized and/or electroreduced
on the electrode material. These functional groups are electroactive on the carbon-based
electrodes [11,28,29], and CV shape showed both anodic peak attributed to the DOX



Nanomaterials 2021, 11, 2788 7 of 18

electrooxidation and cathodic peak corresponding to the DOX and its oxidation product
reduction. This behavior is similar for all carbon-based electrodes tested, whose anodic
and cathodic responses depend linearly on the DOX concentration (Figures 4, 5 and S3).
Several differences appeared between the electrodes behaviors linked to their compositions,
the supporting electrolytes regarding the detection potentials, and the sensitivity, which
are gathered in Table 2.
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Figure 4. Cyclic voltammograms recorded at GRQD/CNT paste electrode in 0.1 M Na2SO4 support-
ing electrolyte (curve 1) and in the presence of various DOX concentrations: 1–10 mg·L−1 (curves
2–11), potential scan rate: 0.050 V·s−1; potential range: 0.00 to +1.50 V vs. Ag/AgCl. Inset: Calibra-
tion plots of current recorded at +0.250 V vs. Ag/AgCl, and +0.660 V vs. Ag/AgCl on anodic branch,
and +0.530 V/Ag/AgCl vs. DOX concentration on cathodic branch.
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Table 2. Detection potential values and the sensitivity for DOX determination.

Electrode Type Supporting
Electrolyte

Anodic Cathodic
∆E, V vs.
Ag/AgCl

|ia|
|ic|E/V vs.

Ag/AgCl
Sensitivity/
A/mg·L−1

E/V vs.
Ag/AgCl

Sensitivity/
A/mg·L−1

Cu/GRQD/CNT 0.1 M NaOH
+0.28 0.12

+0.25 0.13
0.03 0.92

+0.60 0.16 - **

GRQD/CNT * 0.1 M Na2SO4 +0.66 0.71 +0.53 0.46 0.20 1.54

CNT 0.1 M Na2SO4 +0.35 0.24 +0.22 0.06 0.29 4

* DOX oxidation started at +0.2 V vs. Ag/AgCl but no peak is evidenced, ** no corresponding cathodic peak.

Considering the mechanistic aspects of the DOX electrooxidation and reduction pro-
cesses, which are responsible for the performance of the electrochemical detection, it can be
observed that the rates of the DOX electroreduction processes are lower than the rates of the
DOX electrooxidation for the carbon-based electrodes, especially for CNT paste electrode,
while similar rates, which are also, responsible for the detection sensitivities were observed
for Cu/GRQD/CNT paste electrode. Lower rates of the electroreduction processes on the
carbon-based electrodes should be explained by the potential occurrence of other surface-
controlled processes or competition with other secondary process as the reduction of DOX
oxidation product, which is prior generated during the anodic forward scanning.

Based on the characteristics of the ideal reversible system, ∆E (V) = Ea − Ec = 0.059/n
(n-number of electrons), /ia/ic/=1, the reversibility behavior of DOX on Cu/GRQD/CNT
is much closer to ideal in comparison with GRQD/CNT and CNT paste electrodes, which
should be due to the involvement of Cu(I)/Cu(II) redox couple in DOX electrooxidation
and electroreduction. Considering all above presented results related to the detection
peculiarities, GRQD/CNT and Cu/GRQD/CNT electrodes are selected for further detec-
tion studies.

3.2.1. Mechanistic Aspects—Influence of the Scan Rate

To expound the study of the mechanistic aspects for DOX electrooxidation/
electroreduction, the influence of the scan rate on the CV shapes recorded for both GRQD-
based electrodes was studied.

Figure 6a–c shows the results of the increasing scan rate ranged from 10 to 200 mV·s−1

on CVs recorded on Cu/GRQD/CNT in 0.1 M NaOH and 5 mg·L−1 DOX. It can be seen
the shifting of the oxidation potential to more positive values and of the reduction potential
to more negative values at an increasing scan rate, which shows a deviation from the
reversible behavior. This aspect is proved by the anodic and cathodic peak currents (ia
and ic), which are differently influenced by the scan rate increasing (Figure 6c). The linear
dependence of the anodic and cathodic currents vs. the square root of the scan rate informed
about diffusion-controlled processes with the diffusion process rate better for reduction
in comparison with anodic one (ia = 2.40 v1/2 + 0.115 µA; ic = −10.1 v1/2 − (−1.19) µA).
For both anodic and cathodic processes, there is no origin interception but in different
ways and due to different reasons. For anodic process, positive interception suggests that
the surface-controlled aspects cannot be neglected for anodic process, while for cathodic
process more complex mechanism is suggested considering the reverse interception.
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Figure 6. (a) Cyclic voltammograms recorded in 5 mg·L−1 DOX and 0.1 M NaOH supporting electrolyte with the
Cu/GRQD/CNT paste electrode at various scan rates: (curve 1) 10, (curve 2) 20, (curve 3) 30, (curve 4) 40, (curve 5)
50, (curve 6) 60, (curve 7) 80, (curve 8) 100, and (curve 9) 200 mV·s−1; (b) Dependence of peak potential vs. logarithm of the
scan rate. (c) Dependence of anodic and cathodic peaks current vs. square root of the scan rate.

The series of CVs recorded on GRQD/CNT paste electrodes at the same scan rate
range are presented in Figure 7a. The linear dependences of both anodic and cathodic
peaks vs. the square root of the scan rates (Figure 7b) suggest also complex diffusion-
controlled processes of DOX electrooxidation and electroreduction on GRQD/CNT elec-
trode (ia = 32.6 v1/2 − 2.62 µA; ic = −25.5 v1/2 − (−32.6) µA). It must be underlined that
in this situation, the diffusion rates of both DOX electrooxidation and electroreduction are
almost similar in comparison with Cu/GRQD/CNT electrode.
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Taking into account the mechanisms suggested in the literature considering the re-
versible two electrons and two protons based DOX electrooxidation/electroreduction [10]
and supplementary DOX electroreduction [13], which consider the conversion between
quinone and a hydroquinone functional groups, and based on all above presented re-
sults, in this study the tentative global mechanism for DOX electrochemical oxidation and
reduction is proposed in Figure 8.

The occurrence of two reduction processes is evident for the Cu/GRQD/CNT paste
electrode when analyzing the results of the scan rate influence with respect to higher slope
for cathodic in comparison with anodic currents.
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3.2.2. Optimization of DOX Detection at GRQD Based Paste Electrode
Voltammetric Detection of DOX at GRQD-Based Paste Electrodes

Both GRQD/CNT and Cu/GRQD/CNT paste electrodes are further considered for
the development of sensitive voltammetric and amperometric detection of DOX.

DPV and SWV are considered advanced voltammetric techniques tested to enhance
the sensitivity for DOX detection, taking into consideration their advantages of minimizing
the background currents and maximize the faradaic response and implicit, the signal
improvement. An amount of 0.1 M Na2SO4 supporting electrolyte was used for the
GRQD/CNT paste electrode and 0.1 M NaOH supporting electrolyte for Cu/GRQD/CNT
paste electrode.

To optimize DPV working conditions, modulation amplitudes (MAs) ranged between
2 and 2000 mV and the step potentials (SPs) ranged from 1 to 50 mV were applied. The
electrochemical behaviors of the two electrodes were different: stable DPV responses were
achieved for GRQD/CNT paste electrode at increasing DOX concentration, and unstable
and non-reproducible responses were noticed for Cu/GRQD/CNT paste electrode. Ap-
plying DPV technique, a net resulting voltametric current consists of the cumulative effect
of both DOX electrooxidation and electroreduction processes expressed in the anodic and
cathodic currents, and this type will be determined by the favored process (anodic or ca-
thodic). Probably, for Cu/GRQD/CNT paste electrode, a tight competition between anodic
and cathodic processes occurred that confuses each other, leading to the unstable signal.

Series of DPVs recorded at various DOX concentrations ranged from 0.2 to 1.8 µg·L−1

under optimized working conditions of MA of 200 mV and SP of 10 mV for GRQD/CNT
paste electrode are presented in Figure 9. It is very interesting that these voltametric
conditions allowed to identify the two visible anodic peaks, while only the second was
visible by CV (Figure 4). This means that the oxidation of DOX occurs in two stages at
+0.390 V vs. Ag/AgCl and respective, at +0.750 V vs. Ag/AgCl. Very high sensitivities were
achieved at both oxidation potential values, 2572 µA/mg·L−1 at +0.350 V vs. Ag/AgCl
and 2626 µA/mg·L−1 at +0.750 V vs. Ag/AgCl.
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Ag/AgCl, vs. DOX concentrations. 

  

Figure 9. Differential pulse voltammograms recorded at GRQD/CNT paste electrode in 0.1 M
Na2SO4 supporting electrolyte (curve 1) and in the presence of various DOX concentrations:
0.0002–0.0018 mg·L−1 (curves 2 to 10) under operating conditions: MA of 0.200 V and SP of 0.010 V;
Inset: Calibration plots of current recorded at: (a) +0.390 V vs. Ag/AgCl and (b) + 0.750V vs.
Ag/AgCl, vs. DOX concentrations.

Based on the main advantage of SWV to provide fast response, the optimization of
working conditions considers the DPV optimum working conditions and the frequency
between 2 to 50 Hz. The best results achieved at the frequency of 10 Hz are presented in
Figure 10. These working conditions imply the scan rate of 100 mV·s−1, at which only
the first anodic peak corresponding to the DOX oxidation is visible. This shows that the
DOX oxidation rate is lower in the second stage with respect to the first one. Moreover, the
detection potential is shifted to more positive value (+0.510 V vs. Ag/AgCl) in comparison
to DPV (+0.390 V vs. Ag/AgCl). A large spectrum of DOX concentrations was tested and
three concentration ranges resulted after calibration (Inset of Figure 10). The best sensitivity
of 674 µA/mg·L−1 was achieved for the concentration range from 0.200 to 1.00 µg·L−1

DOX, which is about four times lower than 2572 µA/mg·L−1 get by DPV.
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Figure 10. Square wave voltammograms recorded on GRQD/CNT paste electrode in 0.1 M Na2SO4

supporting electrolyte (curve 1) and in the presence of various DOX concentrations: curves 2–6:
0.0002–0.001 mg·L−1 DOX; curves 6–10: 0.001–0.005 mg·L−1; curves 10–13: 0.015–0.035 mg·L−1;
curves 13–18; step potential (SP) 10 mV, modulation amplitude (MA) 200 mV; Hz, and a scan rate
of 100 mV·s−1, potential range: 0.000 to +1.50 V /Ag/AgCl. Inset: Calibration plots of the currents
recorded at E = +0.510 V vs. Ag/ AgCl with DOX concentrations.
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Preconcentration Step Prior to Detection

Considering the sorption property of the GRQD towards DOX, which should nega-
tively affect the detection of high or quite medium concentration of DOX, the development
of a preconcentration-based detection method should allow DOX detection at trace con-
centration levels. The effect of the sorption time was studied by maintaining the electrode
immersed in 0.4 µg·L−1 DOX and 0.1 M Na2SO4 supporting electrolyte at open circuit
potential (OCP) for different times. The series of DPVs recorded at different sorption times
are presented in Figure 11 and the preconcentration factor is given in Figure 11 inset. A
preconcentration factor of about 84 was found after the sorption time of 83 min, which
allowed enhancing the sensitivity from 2573 to 216,105 µA/mg·L−1.
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V /Ag/AgCl. Inset: Voltammetric signals achieved by DPV recorded in the presence of 0.0004 mgL−1 
DOX in 0.1 M Na2SO4 supporting electrolyte at GRQD/CNT electrode, as a function of the sorption 
time in the preconcentration step prior to the detection recorded at E = +0.510 V vs. Ag/AgCl. 
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Figure 11. Differential pulse voltammograms recorded on GRQD/CNT paste electrode in the
presence of 0.0004 mg·L−1 doxorubicin concentrations with different accumulation times; SP of
10 mV, MA of 200 mV; frequency of 10 Hz, and a scan rate of 100 mV·s−1, potential range: 0.000
to +1.50 V /Ag/AgCl. Inset: Voltammetric signals achieved by DPV recorded in the presence of
0.0004 mg·L−1 DOX in 0.1 M Na2SO4 supporting electrolyte at GRQD/CNT electrode, as a function
of the sorption time in the preconcentration step prior to the detection recorded at E = +0.510 V vs.
Ag/AgCl.

Amperometric Detection of DOX at GRQD-Based Paste Electrodes

For practical applications, it is well-known that the amperometry technique is more
convenient due to its simplicity and ease to use. Both GRQD based electrodes were tested
with chronoamperometry (CA) and successive additions of specific volumes of DOX in
each corresponding supporting electrolyte, 0.1 M Na2SO4 for GRQD/CNT paste, and 0.1 M
NaOH for Cu/GRQD/CNT paste electrodes. No response was found for GRQD/CNT
paste electrode using CA technique at all potential levels tested based on CV results as
references and quite for higher potential value, at +0.650 V and respective, +0.800 V vs.
Ag/AgCl (the results are shown in Supplementary Materials—Figure S4).

On the opposite side, Cu/GRQD/CNT paste electrode recorded an increasing current
characterized by linear dependence with DOX concentrations by CA at both potential
levels selected also based on CV results +0.280 V and at +0.600 V vs. Ag/AgCl, respectively
(Figure 12a,b). Similar sensitivities (0.026 µA/mg·L−1) were found at the two potential
values even if the sensitivities obtained by CV were different (0.119 µA/mg·L−1 at +0.280 V
vs. Ag/AgCl and 0.165 µA/mg·L−1 at +0.600 V vs. Ag/AgCl). It is clearly that the
way of DOX electrooxidation/electroreduction process occurrence is different at constant
potential in comparison with potential scanning within a potential range, related to the
overall current resultant in each situation. Moreover, the electrode fouling occurred by the
constant potential maintaining, which is reflected in much lower sensitivity reached for
CA in comparison with voltammetric techniques. Considering the potential of chloride
interference for real samples of water or human urine, before the first DOX concentration
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addition, 250 mg·L−1 NaCl was added during CA recording and no signal in its presence
was founded.
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ing electrolyte and in the presence of various doxorubicine concentrations: 1–8 mgL−1 for the detection potential level of: 
(a) E= +0.28 V vs. Ag/AgCl. Inset: Calibration plots of current vs. DOX concentration; (b) E= +0.6 V vs. Ag/AgCl. Inset: 
Calibration plots of current vs. DOX concentration. 
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Figure 13. (a) Multiple-pulsed amperograms recorded at Cu/GRQD/CNT electrode in 0.1 M NaOH supporting electrolyte 
and consecutively and continuously adding 1 mg·L−1 DOX, recorded at E1 = −0.5 V/Ag/AgCl, E2 = +0.28 V/Ag/AgCl, E3 
=+0.6 V/Ag/AgCl, and E4 = +1.25 V/Ag/AgCl in the presence of 250 mgL−1 NaCl; (b) Calibration plots of the currents rec-
orded at: E= +0.28 V/ Ag/ AgCl, and E= +0.6 V/Ag/AgCl, versus doxorubicin concentrations. 

Figure 12. Chronoamperograms (CAs) recorded with the Cu/GRQD/CNT composite electrode in 0.1 M NaOH supporting
electrolyte and in the presence of various doxorubicine concentrations: 1–8 mg·L−1 for the detection potential level of:
(a) E = +0.28 V vs. Ag/AgCl. Inset: Calibration plots of current vs. DOX concentration; (b) E = +0.6 V vs. Ag/AgCl. Inset:
Calibration plots of current vs. DOX concentration.

Another amperometric variant to the CA is multiple-pulsed amperometry (MPA),
which was proposed considering the two detection potential levels at +0.280 V and +0.600 V
vs. Ag/AgCl and more two potential values, one for advanced oxidation of DOX at +1.25
V vs. Ag/AgCl that assured in situ electrode surface cleaning and copper oxides formation
and the last one at −0.5 V vs. Ag/AgCl that renews the electrode surface and Cu (I) is
reactivated, according with the following scheme:

E1 = −0.500 V vs. Ag/AgCl for 0.2 s—electrode surface renew and Cu (I) maintaining (1)

E2 = +0.280 V vs. Ag/AgCl for 0.15 s—represents the detection potential at which the
first stage oxidation of DOX occurred

(2)

E3 = +0.600 V vs. Ag/AgCl for 0.15 s—represents the detection potential at which the
second stage oxidation of DOX occurred

(3)

E4 = +1.250 V vs. Ag/AgCl for 0.15 s—to assure in situ electrode surface cleaning
concomitant with copper oxides formation

(4)

The amperograms recorded above-presented conditions of the MPA are presented in
Figure 13a and the calibration of the linear dependences of the current vs. DOX concentra-
tions at both detection potentials are showed in Figure 13b. In comparison with CA, better
sensitivities were reached, which are however, worse than those reached by CV. However,
the lowest limit of detection (LOD) is better for amperometric techniques in comparison
with CV.
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and consecutively and continuously adding 1 mg·L−1 DOX, recorded at E1 = −0.5 V/Ag/AgCl, E2 = +0.28 V/Ag/AgCl, E3 
=+0.6 V/Ag/AgCl, and E4 = +1.25 V/Ag/AgCl in the presence of 250 mgL−1 NaCl; (b) Calibration plots of the currents rec-
orded at: E= +0.28 V/ Ag/ AgCl, and E= +0.6 V/Ag/AgCl, versus doxorubicin concentrations. 

Figure 13. (a) Multiple-pulsed amperograms recorded at Cu/GRQD/CNT electrode in 0.1 M NaOH supporting electrolyte
and consecutively and continuously adding 1 mg·L−1 DOX, recorded at E1 = −0.5 V/Ag/AgCl, E2 = +0.28 V/Ag/AgCl,
E3 = +0.6 V/Ag/AgCl, and E4 = +1.25 V/Ag/AgCl in the presence of 250 mg·L−1 NaCl; (b) Calibration plots of the currents
recorded at: E= +0.28 V/ Ag/ AgCl, and E= +0.6 V/Ag/AgCl, versus doxorubicin concentrations.

The comparative electroanalytical performances for DOX detection obtained with
the two GRQD-based electrodes using all studied electrochemical voltammetric and am-
perometric techniques in both 0.1 M Na2SO4 and 0.1 M NaOH supporting electrolytes
are gathered in Table 3. The DPV technique achieved the best sensitivity and LOD and
LQ at the detection potential value of +0.390 V vs. Ag/AgCl using GRQD/CNT paste
electrode. However, for practical application, the accumulation time will be proposed
related to the requirements. Good results were obtained by MPA with Cu/GRQD/CNT
paste electrode at lower detection potential of +0.280 V vs. Ag/AgCl that mitigate the
interference aspects and has the advantage of the method simplicity and lower negative
detection potential value.

Table 3. The electroanalytical parameters for doxorubicin detection with working paste electrode.

Electrode
Used Technique Potential Detection/V

vs. Ag/AgCl
Sensitivity/µA

mg·L−1
Correlation

Coefficient/R2
LOD (a)/
mg·L−1

LQ (a)/
mg·L−1

RSD (b)

(%)

GRQD/CNT

CV

0.660 0.706 0.989 0.065 0.217 0.194

0.530
Cathodic branch 0.451 0.998 0.233 0.778 0.507

DPV 0.390 2572.68 0.962 8.35 × 10−5 2.78 × 10−4 0.05

SWV 0.510 673.77 0.962 1.7 × 10−4 5.9 × 10−4 0.01

Preconc. DPV 0.390 216,105 0.962 9.94 × 10−7 3.31 × 10−6 0.05

Cu/GRQD/
CNT

CV

0.280 0.119 0.992 3.781 12.605 6.67

0.600 0.165 0.998 2.758 9.192 5.49

0.220
Cathodic branch 0.131 0.999 1.172 3.907 4.90

CA
0.280 0.026 0.996 2.316 7.721 2.99

0.600 0.026 0.980 0.371 1.236 7.78

MPA
0.280 0.041 0.998 0.470 1.568 0.79

0.500 0.037 0.991 3.123 10.411 0.53

(a) LOD- Limit of detection LQ- Limit of quantification (b) RSD- Relative standard deviation determined for three replicates.
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It is obviously that GRQD/CNT paste electrode allowed the best limit of detection
for DOX determination using optimized DPV and preconcentration-DPV methods. In
comparison with other carbon-based electrodes reported for DOX detection, GRQD/CNT
paste electrodes shows the lowest limit of detection (see Table 4), which makes it to be
appropriate for DOX detection at trace levels, as DOX presence has been reported in real
surface waters.

Table 4. Comparison of performances of GRQD/CNT paste electrode with carbon-based electrodes for electrochemical sensing
of doxorubicin.

Method Electrode Modifier LOD (µM) Matrix References

CV, DPV GCE MWCNT/AgNPs 0.002 - [40]

DPV GCE PS/Fe3O4-GO-SO3H 0.0049 plasma [15]

DPV CPE Carbon paste 0.01 - [41]

DPV, Impedimetric GCE DNA sensors 0.0001 Drugs, artificial plasma [42]

SWV HMDE - 0.1 - [43]

CV, DPV GCE GQD 0.016 plasma [28]

CV Pt MWCNT 0.003 plasma [44]

DPV GRQD/CNT - 1.53 × 10−4 water This work

Preconc. DPW GRQD/CNT - 1.83 × 10−6 water This work

All carbon electrodes allowed detecting DOX, but the best sensitivity was reached for
GRQD/CNT paste electrode.

In order to test both voltammetric methods using GRQD/CNT paste electrode and
amperometric using Cu/GRQD/CNT paste electrode on real samples, 2 mg·mL−1 DOX
concentrated solution for infusion was diluted to prepare two ranges of DOX concentrations.
One range of DOX solutions of 0.5 µg·L−1, 5 µg·L−1 and 50 µg·L−1 were prepared to test the
GRQD/CNT paste electrode with the optimized DPV and the other of 1 mg·L−1, 5 mg·L−1

and 10 mg·L−1 DOX for Cu/GRQD/CNT paste electrode by optimized multiple-pulsed
amperometry. The recovery degree was checked by these methods in accordance with the
concentration declared by the producer. An average recovery degree of 96% was obtained
with GRQD/CNT paste electrode by optimized DPV and 103% for Cu/GRQD/CNT paste
by optimized MPA.

Repeatability of the proposed detection procedure was evaluated by comparing the
results of the determination of a solution containing 50 µg·L−1 DOX with GRQD/CNT
paste electrode with DPV and 10 mg·L−1 DOX for Cu/GRQD/CNT paste electrode with
MPA during the three days. The relative standard deviation less than 5% demonstrated
a good repeatability of both proposed GRQD/CNT paste electrode based voltammetric
procedure and CuGRQD/CNT paste electrode based amperometric procedure. Finally,
the results obtained by these methods for 5 mg·L−1 DOX were compared with those
obtained by a spectrophotometrical method [45], and it can be concluded that the three
methods lead to very close results and that the accuracy of both proposed voltammetric
and amperometric methods are good.

4. Conclusions

Two types of nanostructured carbon pastes electrodes, graphene quantum dots
(GRQD)-carbon nanotubes in paraffin oil (GRQD/CNT) and Cu(I) complex liquid crys-
talline material-graphene quantum dots (GRQD)-carbon nanotubes in paraffin oil
(Cu/GRQD/CNT) electrodes were obtained, characterized morphostructurally, and tested
for the electrochemical detection of doxorubicin (DOX)—a commonly used cytostatic in
cancer therapy, whose presence was reported in various types of real wastewater and
surface waters.
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The results of the SEM images and FTIR spectra show both morphological and struc-
tural modifications of the Cu/GRQD/CNT paste electrode composition with respect to
the individual components, suggesting some kinds of weak intermolecular interactions
between Cu complex and functional groups on the carbon surface.

Based on the mechanism elucidation trough cyclic voltammetry (CV), the complex
DOX electrooxidation/electroreduction process represents the basis for the development
of its voltammetric and amperometric detection with the two GRQD/CNT and
Cu/GRQD/CNT paste electrodes. Substitution of a part of GRQD with the Cu(I) complex
reduced the active surface area resulting in a lowering of the electrode sensitivity, but
permitted a shift of anodic detection potential towards lower values which should avoid
the interference of other analytes. The CV results also allowed the selection of the best
supporting electrolytes: 0.1 M Na2SO4 for GRQD/CNT paste electrode and 0.1 M NaOH
for Cu/GRQD/CNT paste electrode.

For the detection method development, this study found the DPV and SWV tech-
niques suitable for GRQD/CNT paste electrode to achieve a very nice electroanalytical
performance related to the sensitivity and the lowest limit of detection. For this electrode,
no stable response was achieved using amperometric techniques. Cu/GRQD/CNT was
not able to get a stable voltametric response with the advanced DPV and SWV but by CA
and MPA the response was stable. However, the electroanalytical performance was worse
in comparison with GRQD/CNT paste electrode, but should allow a better availability
for practical detection application methods. Considering the sorption properties of the
graphene quantum dots, by applying the preconcentration step before DPV detection, the
lowest limit of detection of 1 ng·L−1 was achieved, which is better than the ones reported in
the literature for carbon-based electrodes. Both GRQD-based paste electrodes showed great
potential for DOX determination in water. The selection of the best electrode composition
should rely on the DOX concentration level.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/nano11112788/s1, Figure S1: FT-IR spectra of CNT/paraffinic oil (a) and GRQD/CNT/paraffinic
oil (b), Figure S2: FT-IR spectra of Cu(I) complex, GRQD/Cu/CNT paste electrode and polarized
GRQD/Cu/CNT, Figure S3: Cyclic voltammograms recorded at CNT paste electrode in 0.1 M Na2SO4
supporting electrolyte (curve 1) and in the present of various doxorubicin concentrations: 1–7 mg·L−1

(curves 2–6), potential scan rate: 0.05 V·s−1; potential range: −0.5 to +1.5 V/Ag/ AgCl. Inset: Calibra-
tion plots of current recorded at +0.34 V/Ag/AgCl on the anodic branch, and +0.47 V/Ag/AgCl on
the cathodic branch vs. doxorubicin concentration, Figure S4: Chronoamperograms (CAs) recorded
with the GRQD/CNT composite electrode in 0.1 M NaOH supporting electrolyte and in the presence
of various doxorubicine concentrations: 1–8 mg·L−1 for the detection potential level of: (a) E = +0.8 V
vs. Ag/AgCl, and (b) E = +0.65 V vs. Ag/AgCl.
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