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Abstract: The aim of this article is to present a nonconventional method for the efficient removal of 

lead ions from industrial wastewater. For this purpose, magnetite nanomaterial was used, which 

was very easily separated from the wastewater at the end of the treatment due to its magnetic prop-

erties. Currently, nanotechnology is an efficient and inexpensive manner that is being researched 

for wastewater treatment. Additionally, iron oxide nanoparticles are widely used to remove heavy 

metal ions from water due to their special properties. The experimental results detailed in this article 

show the influence of pH and contact time on the process of adsorption of lead ions from 

wastewater. The magnetite nanomaterial had its maximum efficiency of speed when the wastewater 

had pH 6. At a lower pH, the highest treatment efficiency was over 85%, and the required contact 

time has doubled. When the pH increases above 6, the precipitation process occurs. Langmuir and 

Freundlich models were used to describe the adsorption process. 
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1. Introduction 

Various methods for removing lead have been used, including adsorption, coprecip-

itation [1], reverse osmosis [2], ion exchange [3], membrane filtration [4], etc. Among 

these, the most preferred method is adsorption, since it is simple, economical, and envi-

ronmentally friendly. 

Nanotechnology is used for environmental remediation because it can provide a po-

tentially cheap and efficient way for wastewater treatment [5]. Magnetic nanoadsorbents 

such as spinel ferrites, maghemite, and hematite are strong adsorbents for the removal of 

pollutants from wastewater. The application of an external magnetic field will easily iso-

late them from the reaction media due to their magnetic properties. Additionally, the ap-

plication of magnetic separation on the nanoadsorbents provides the invaluable benefit 

of the rapid recovery of toxic metals from wastewater [6]. Due to their easy separation 

from wastewater and low toxicity, iron oxide nanoparticles are commonly used for metal 

removal [7,8]; in addition, if the nanoparticles are composed of magnetite, they can be 

easily separated from the associated pollutants [9]. The literature shows that magnetite 

nanoparticles are of a wide variety and can be further modified to improve their proper-

ties. The literature shows numerous studies on the use of magnetic nanoadsorbents to 

remove specific heavy metals in their ionic states, such as chromium, nickel, arsenic, co-

balt, lead, copper, and others [10–15]. Magnetite nanoparticles are a promising solution 

because they are hydrophilic, are super paramagnetic, and have a high surface area [16]. 
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The efficient implementation of magnetic nanoadsorbents depends on their efficiency in 

the selective adsorption of the pollutants involved and their surface chemistry [6,15]. 

The potential process of lead ion adsorption on magnetite nanoparticles is shown in 

Figure 1. On the surface of the magnetite nanoparticles, certain surface groups are formed, 

namely -FeOH2+ and -Fe+, due to protonation and deprotonation. It is observed that -Fe-

O- may easily bond with Pb2+. 

 

Figure 1. The adsorption mechanism of lead on magnetite nanoparticles [17]. 

The advantages of the adsorption method using magnetic nanomaterials, including 

magnetite, are their high efficiency of removal of heavy metal ions such as Pb(II), avoid-

ance of secondary waste generation, production of no secondary pollutants, ability to treat 

large amounts of wastewater in a short time, good selectivity, and potential to be easily 

recycled and utilized on an industrial scale [18]. Due to their smaller size, magnetite na-

nomaterials have an increased surface area, thus improving adsorption capacities for lead 

ion removal. 

Lead is one of the heavy metals that is associated with toxic poisoning even if it exists 

in low concentrations in wastewater. According to NTPA 001/2002, the maximum value 

of lead ions in wastewater must not exceed 0.20 mg/L. In industrial wastewater, lead ions 

are found in concentrations of about 200–500 mg/L; the concentrations are very high in 

relation to the values imposed by the legislation in force [19]. The main sources of lead ion 

pollution are effluents from battery processing, steel industries, fuels, paint pigment, pho-

tographic materials, automobiles, aeronautics, explosives manufacturing, or coating in-

dustries [20,21]. Accumulation of lead ions in the human body can lead to cancer, memory 

problems, brain damage, high blood pressure, kidney disease, premature birth, hearing 

loss, or low IQ in children [22–24]. 

In order to regenerate the magnetite nanoparticles, the researchers noticed that an 

acidic environment is needed [25,26]. Thus, a high regeneration efficiency using 0.1 M H+ 

was obtained, and the adsorption capacity of the reused magnetic nanoparticles remained 

almost constant over the next four cycles. 

In order to remove lead ions from wastewater, the researchers used magnetite nano-

particles or composite nanomaterials that contain magnetite nanoparticles. Examples of 

the materials used in the lead ion adsorption process, which includes working conditions 

and treatment efficiencies, are recorded in Table 1. 

In the present study, the adsorption process was applied in order to remove lead ions 

from wastewater. This article provides novel research through the following considera-

tions: the utilization of magnetite nanoparticles with different characteristics [27] from 

other magnetite nanoparticles used in the adsorption process of lead ions from 

wastewater [6,28,29], testing wastewater samples with different concentrations of lead 

ions (0.70, 1.00, 1.20, 1.45, 1.64 mg/L) from the scientific literature, and conducting exper-

iments with two temperature values. 
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Table 1. Materials used for lead removal from wastewater. 

Adsorbent 

Quantity of 

Adsorbent 

(g/L) 

Solution 

Volume 

(mL) 

pH 

Contact 

Time 

(min) 

Speed 

(rpm) 

Temp. 

(°C) 

Ci 

(mg/L) 
Ƞ (%) Ref. 

Fe3O4 0.05 100 

4 

30 - 25 50 

≈84.00 

[6] 6 ≈85.00 

9 ≈95.00 

Fe3O4 1.00 50 5 - - 25 

25 91.00 

[28] 50 56.00 

100 31.00 

Fe3O4 10.00 10 5.5 1440 200 25 220 100.00 [29] 

Chitosan/magnetite 0.10 100 6 120 - 
Room 

temp. 
70 90.47 [30] 

Magnetite (Fe3O4) nanospheres 1.00 50 5 - - 25 10 >70.00 [31] 

Fe3O4 / cyclodextrin polymer 12.00 10 5.5 120 230 25 100 99.50 [32] 

PVP–Fe3O4 - - 6.5 90 200 - 1 100.00 [9] 

15% Fe3O4/SiO2 5.00 25 4.8 360 - 
Room 

temp. 
50 99.84 [33] 

Fe3O4 @ SiO2–NH2 core-shell 1.00 50 5.2 960 - 25 148 ≈87.83 [34] 

L-cysteine functionalized Fe3O4 

1.00 

50 6 60 200 25 50 

45.00 

[16] 2.00 99.00 

2.50 99.00 

Natural goethite 40.00 25 5 - - 30 750 100.00 [35] 

Peat moss 0.24 100 6 180 125 23±1 10 96.00 [36] 

Waste beer yeast 20.00 - 5 120 150 - 25–100 96.34 [37] 

Coal fly ash 1.50 50 - 240 - - 100 90.37 [38] 

Sawdust waste 2.00 50 6.5 240 200 30 103.6 88.60 [39] 

Activated bamboo charcoal 1.00 100 5 360 150 29 60 83.01 [40] 

Banana peels 40.00 - 5 20 100 25 50 85.30 [41] 

Coconut shell 1.00 50 4.5 180 180 - 10 99.00 [42] 

Natural orange peel 10.00 12 5 60 - 
Room 

temp. 
30 99.00 [43] 

Ficus Religiosa leaves 10.00 100 4 45 200 50 100 80.00 [44] 

2. Materials and Methods 

In this study, the nanomaterial used to remove lead ions from synthetic wastewater 

was magnetite (Fe3O4). This was obtained through the coprecipitation process. The mag-

netite particles applied in the process of adsorption of lead ions from wastewater were 

synthesized using a concentration of aqueous sodium hydroxide solution of 0.8 mol/L. 

The molar ratio of Fe2+: Fe3+: PEG: PVP unit was set at 1: 2: 3: 4. Centrifugation was used 

to separate the precipitate, and then it was washed several times with water. Precursor 

calcination was performed at 410 °C for a period of 2 hours to obtain Fe3O4 powder [27]. 

The reagents that were used to determine the concentration of lead ions (hydroxylammo-

nium chloride, ammonia solution, and potassium cyanide) were purchased from Sigma-

Aldrich, Burlington, MA, USA. The analysis of lead ion concentrations in synthetic 

wastewater was performed with the PhotoLab S12 photometer purchased from Wissen-

schaftlich-Technische Werkstätten GmbH (WTW), Weilheim, Germany. 

All experiments were performed at room temperature and at 30 °C with rotational 

speeds of 300 and 400 RPM having different concentrations (0.70; 1.00; 1.20; 1.45; 1.64 

mg/L), and the dose of adsorbent nanomaterial was 2.00 g/L. The pH values were set at 4 

and 6 for each concentration using 0.1 M HCl. The experimental results were obtained in 
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accordance with ISO 8466-1 and DIN 38402 A51 (10-mm cell) with a measuring range be-

tween 0.010 and 5.00 mg/L Pb (II). 

The equilibrium adsorption amount (qe, mg/g) of Pb (II) ions was calculated using 

the following formula: 

q� =
(C� − C�) × V

W
 (1)

where Ci is the initial concentration of Pb (II) ions (mg/L) 

Ce is the equilibrium concentration of Pb (II) ions (mg/L) 

V is the volume of the solution (L) 

W is the amount of the nanomaterial (g). 

Furthermore, the treatment efficiency (ƞ, %) was also determined by the following 

equation: 

 ƞ =
�� − ��

��

× 100 (2)

where Ci is the initial concentration of Pb (II) ions (mg/L) 

Cf is the final concentration of Pb (II) ions (mg/L). 

In this article, two models of adsorption isotherms have been described in order to 

remove lead ions from wastewater, namely Langmuir and Freundlich. 

The formula used to describe the Langmuir model is presented below: 

q� =
Q� × K� × C�

1 + K� × C�

 (3)

where qe is the quantity of Pb (II) adsorbed by magnetite at equilibrium (mg/g) 

Q0 is the maximum monolayer coverage capacity (mg/g) 

KL is the Langmuir isotherm constant (L/mg) 

Ce is the equilibrium concentration of adsorbate (mg/L). 

The RL parameter was calculated using the following formula: 

R� =  
1

1 + (1 + K� × C�)
 (4)

where RL is the value that indicates if the process is unfavorable (RL > 1), linear (RL = 1), 

favorable (0 < RL < 1), or irreversible (RL = 0) [22] 

KL is the Langmuir constant 

C0 is the initial concentration [mg/L]. 

The Freundlich model is followed using the equation below: 

q� = K� × C�
�/� (5)

where qe is the quantity of metal adsorbed by magnetite at equilibrium (mg/g) 

KF is the Freundlich isotherm constant (mg/g) 

Ce is the equilibrium concentration of adsorbate (mg/L) 

n is the adsorption intensity. 

3. Results 

3.1. The pH Effect 

The removal efficiency of lead ions from wastewater was performed at two pH val-

ues, 4 and 6. The results can be seen in Figure 2. 
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Figure 2. The pH effect on the removal process of Pb (II) ions (conditions: metal ion concentration 0.70 (a); 1.00 (b); 1.20 

(c); 1.45 (d); 1.64 (e) mg/L). 

The experiments were done in triplicate. Thus, the error bars are presented in Figure 

3 in the case of experiments performed on wastewater with pH 4. 

 

Figure 3. Error bars for experiments performed at pH 4. 
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It can be seen that in the case of pH value 4, the treatment efficiencies reach up to 

84.40% in the case of the removal of a concentration of 1.00 mg/L of lead ions from the 

wastewater, while, at pH value 6, 100% treatment efficiencies were obtained. It is also 

observed that with the increase of the initial concentration of lead ions, the required con-

tact time increases more in the case of pH 4 (from 180 to 420 min) than in the case of pH 6 

(from 90 to 270 min). Moreover, at pH 6, the process is faster (up to 270 min) than at pH 4 

(up to 420 min). The experiments performed at pH values greater than 6 do not show 

certainty that lead ions will be removed from the synthetic wastewater solution by the 

adsorption process. 

In the case of the interaction of lead ions with the magnetite nanomaterial, the litera-

ture shows that in case of pH higher than 6.5 Pb(OH)2, it is the dominant species, and in 

case of pH lower than 6.5, we have Pb2+ and Pb(OH)+ [45]. The reaction below demon-

strates that the surface of the adsorbent nanomaterial can be subjected to protonation or 

deprotonation [46,47]: 

H�O + M − O� <
H�

OH�
> M − OH <

H�

OH�
> M − OH�

� (6)

Once the wastewater pH is basic, there will be a fairly high electrostatic attraction 

between the surface of the magnetite nanomaterial that is negatively charged and lead 

ions. When the pH of the wastewater decreases, the number of sites that are positively 

charged will increase, and the number of sites that are negatively charged will decrease. 

Thus, the adsorption of lead ions is not favored due to electrostatic repulsion. In an acidic 

environment, hydrogen ions that are present in excess will compete with lead ions for 

adsorption sites, and therefore the treatment efficiency is lower. 

In water, magnetite nanoparticles present surface hydroxyl groups (Fe–OH). De-

pending on the pH of the wastewater, the protonation or deprotonation of the hydroxyl 

groups is observed. At pH < pHpzc the surface of the nanoparticles is positively charged 

(FeOH2+), and at pH > pHpzc the surface of the nanoparticles is negatively charged (FeO−) 

[28,48,49]. As the pH of the wastewater increases from 4.0 to 6.0, the adsorption of lead 

ions increases due to the electrostatic attractions that occur between Fe–O and Pb2+. The 

low adsorption of lead ions at pH 4 is due to the competition for adsorption sites on the 

surface of available magnetite nanoparticles between H3O+ and Pb2+. The inner surface of 

magnetite nanoparticles forms a complex that has a covalent bond between the lead ion 

and the surface oxide’s oxygen. 

3.2. Contact Time Effect 

The effect of contact time on wastewater at pH 4 and 6 was studied and can be seen 

in Figure 4. 

 
(a) 
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(b) 

Figure 4. Efficiencies of wastewater treatment versus time at pH 4 (a) and pH 6 (b). 

From Figures 2 and 4, we can see that the concentration of lead ions decreases for a 

while, then increases. Thus, the treatment efficiency increases up to a certain percentage, 

then decreases. In the case of pH 6, the equilibrium concentration (90 min for the initial 

concentration 0.70 mg/L, 150 min for the initial concentration 1.20 mg/L) was reached in a 

shorter time than in the case of pH 4 (180 min for the concentration 0.70 mg/L, 420 min for 

the initial concentration 1.20 mg/L). In the first 60 min (at pH 4) and 30 min (at pH 6), the 

removal of lead ions from wastewater is faster due to the rapid occupation of the sites on 

the surface of the magnetite. 

3.3. The Impact of Temperature on the Adsorption Process 

To observe the effect of temperature on the adsorption process of lead ions on the 

magnetite nanomaterial, the temperature was increased to 30 °C, and the results are 

shown in Figure 5. 

 

Figure 5. Efficiencies of wastewater treatment at 30 °C versus initial concentrations at pH 4 (a) and pH 6 (b). 

In this case, increasing the temperature to 30 °C leads to lower treatment efficiencies 

than in the case of the experiments performed at room temperature. In the case of pH 4 
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and 6, the difference between the two temperatures is between 4.14 and 13.4% and 18.57 

and 29.88%, respectively, depending on the initial concentrations of the pollutant. 

3.4. The Impact of Rotation Speed on the Adsorption Process 

The rotation speed was increased to 400 RPM to see if there was an improvement in 

the treatment efficiencies; the results can be found in Figure 6. 

 

Figure 6. Efficiencies of wastewater treatment in the case of 400 RPM versus initial concentrations at pH 4 (a) and pH 6 (b). 

When the rotational speed was increased from 300 RPM to 400 RPM the results were 

clearer and increased slightly, the difference between the treatment efficiencies reaching 

up to a percentage of 7.59% depending on each initial concentration of lead ions. Apart 

from this aspect, the treatment time was shortened by up to 30 min. In the case of pH 6, 

the treatment efficiencies also reached 100%. 

3.5. Adsorption Isotherms 

The experimental data were used for Langmuir and Freundlich models (Figure 7–9). 

Modeling of adsorption isotherms provides information about the adsorption process, the 

surface properties of the adsorbent nanomaterial, and its affinities. The constants of the 

Langmuir and Freundlich adsorption isotherms obtained from the processing of experi-

mental data are presented in Table 2. 

Table 2. Adsorption isotherm constants. 

Adsorbent Langmuir Isotherm Freundlich Isotherm 

Fe3O4 
KL(L/mg) RL R2 1/n n 

KF 

(mg/g) 
R2 

0.60 0.68 0.93 0.10 9.25 1.45 0.75 

Due to the fact that the RL value is between 0 and 1, it is understood that the adsorp-

tion is favorable and that there is an efficient interaction between the adsorbent nano-

material Fe3O4 and lead ions in accordance with the Langmuir model. 

The Freundlich isotherm explains the monolayer and multilayer adsorption. The val-

ues KF and n can be determined using a linear equation resulting from plotting the curve 

log qe/log Ce (Figure 9). Thus, the value 1/n must be between 0 and 1 in order to apply the 

Freundlich model. In the present case, the value of 1/n is 0.10, thus indicating that the 

adsorption process is favorable. 
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Figure 7. Experimental isotherm for different concentrations of lead ions (0.70; 1.00; 1.20; 1.45; 1.64 

mg/L). 

 

Figure 8. Langmuir model for the adsorption of lead ions from wastewater. 

 

Figure 9. Freundlich model for the adsorption of lead ions from wastewater. 

5. Conclusions 

In the case of wastewater with pH 6, the treatment efficiency reached 100% at all 

studied concentrations at room temperature. The highest treatment efficiency in the case 

of the removal lead ions from wastewater at pH 4 was 85.71% at the initial concentration 

of 0.70 mg/L at room temperature when the rotational speed was set to 400 RPM. The 

required contact time is longer in the case of pH 4 than in the case of pH 6. The minimum 

contact time at which the maximum treatment efficiency was reached was 60 minutes and 

150 minutes in the case of wastewater with pH 6 (100%) and pH 4 (85.71%), respectively. 

There is also the phenomenon of desorption (reversible adsorption). 

As the pH of the wastewater increases (up to pH 6), the adsorption of lead ions on 

the Fe3O4 surface is facilitated. On the other hand, if the pH rises above 6, the removal of 

lead ions can be achieved through the adsorption process, but precipitation can also occur 

due to the metallic hydrolysis of lead hydroxide. 
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Compared to the literature, in the case of the experiments presented in this article, 

the concentrations studied for lead ions were lower, but the importance of the pH of the 

wastewater was observed, and the treatment process was fast. The study of lower concen-

trations of lead ions in laboratory conditions demonstrates the maximum treatment effi-

ciency, and the data can be reported on an industrial scale. 
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