

Dr. Ing. Costel Bumbac,

Dr. Ing. Elena Elisabeta Manea,

Dr. Tiron Olga

EU WATER FRAMEWORK DIRECTIVE

 Water is not a commercial product like any other but, rather, a heritage which must be protected, defended and treated as such

SDG 6: Ensure access to water and sanitation for all

HISTORY OF SANITATION

MINOAN PALACE, KNOSSOS - 1700 B.C.

An Abridged History of Onsite Wastewater, Steve J. Steinbeck, et al. 2005

ROMAN EMPIRE: SEWAGE TRANSPORT

An Abridged History of Onsite Wastewater, Steve J. Steinbeck, et al. 2005

ROMAN LAW ON FEACES DISCHARGE (500 B.C.)

Dejecti Effusive Act:

If any person threw or poured anything from the room of a house upon a place commonly frequented by people, and thereby caused damage, the praetor's edict gave the injured party an action against the occupier of the house.

Note: Applicable during the day.

Note: not applicable only for

staining clothes.

MORE RECENT INNOVATIONS

Moule Patent (1869): Dry Earth commode

Use instructions:

The earth needs to be dried and sifted.

No sand should be used.

Stand up from the seat quickly.

Before use, let one fall of earth be in the pail.

Water toilets in antiquity:

- Indus valley, Knossos,
- Bahrain,
- Rome

Later inventions

- Sir John Harrington (1596)
 - Toilet for Queen Elizabeta I
- Alexander Cummings (1775)
 - o trap "S"
- Sir Thomas Crapper (1880s)
 - Valveless waste preventer (siphon)
- Thomas McAvity Stewart (1907)
 - Vortex washing toilet

Current state of development

Technological progress

COMMON CONFIGURATION OF LARGE WWTP

Technological progress

Different roads for the same goal "Sanitation for all"

- 1. Optimization of wastewater treatment processes
 - Increase efficiency
 - Increase treatment capacity
 - Decrease investment, operation and maintenance costs
- 2. Rethinking wastewater treatment
 - New biological solutions for wastewater treatment
- 3. Low-cost nature based sollutions
 - Decentralised/centralised
 - Easy to install
 - Maintenance free or low maintenance
 - Nature based

1. Optimization of wastewater treatment processes

- Increase efficiency
- Increase treatment capacity
- Decrease investment, operation and maintenance costs

2. Rethinking wastewater treatment

New biological solutions for wastewater treatment

https://www.graalrecovery.com

3. Low-cost nature based sollutions

- Decentralised/centralised
- Easy to install
- Maintenance free or low maintenance
- Nature based

Lumbrifilter

Daphniafilter

Bio Solar Purification

UV Disinfection

4 Modular Technologies

- Primary and secondary treatment
- Aerobic system utilising earthworms and bacteria
- Removes BOD, suspended solids, ammonium

- Tertiary treatment
- Daphnia species consume very fine suspended solids, including bacteria
- Biofilm removes nutrients and other pollutants
- Tertiary treatment
 Biofilm removes
 nutrients and other
 pollutants
- Disinfection
 Optimised UV lamp
 configuration kills
 pathogens in treated
 wastewater

INNOQUA WORLDWIDE DEMONSTRATION

Prototype	Configuration		
Ireland	LBF+DF+UV		
Spain	LBF+DF+BSP		
Demosite	Configuration		
Ireland	LBF		
Ecuador	LDF		
Italy	LBF+UV		
France			
Romania	LBF + DF		
Scotland			
Tanzania	LDE DE LW		
Turkey	LBF + DF + UV		
India	LBF + DF + UV		
Peru	LBF + BSP		
France	Lumbricomposting		

Lumbrifilter (Ireland) – municipal wastewater (primary settled)

IRELAND - PILOT & DEMO-SITE

% Removal - average effluent value in ()

70 Kemevar average emacin value in ()						
COD	BOD ₅	TN	TSS	NH ₄ -N	TP	
78	93	40	80	88	29	
(111)	(15)	(23)	(23)	(4)	(5)	
Surface Removal Rate (g/m².day)						
192	115	10	30	13	1.1	

- Top up woodchip (once a year)
- No other maintenance

Lumbrifilter +UV system

SETTLEMENT TANK

	Inlet lumbrifilter (mg/L) n = 24	Outlet lumbrifilter (mg/L) n = 24	Removal efficiency (%)	Local discharge Regulation (mg/L)
TSS	316	23	93	80
COD	998	143	86	160
BOD	391	16	96	40
NH4	88	10	87	15

Lumbrifilter +DF +UV system Lumbrifilter +BSP

Wastewater characteristics

TSS: 940-4030mg/L, aver. 2190mg/L **BOD:** 600-2000mg/L, aver. 1165mg/L **COD:** 1104-4190mg/L, aver. 2241mg/L **NH4-N:** 60-144mg/L, aver. 104mg/L wastewater **temp.:** 20.8 up to 38.8°C

Lumbrifilter +DF +UV system Lumbrifilter +BSP

(India &Peru)

DF+UV

BSP

average

average

Wastewater characteristics

TSS: 940-4030mg/L, aver. 2190mg/L **BOD:** 600-2000mg/L, aver. 1165mg/L **COD:** 1104-4190mg/L, aver. 2241mg/L **NH4-N:** 60-144mg/L, aver. 104mg/L wastewater **temp.:** 20.8 up to 38.8°C

		TSS	BOD	COD	NH ₄ - N	
		mg/L	mg/L	${ m mg/L}$	mg N/L	
LFin	average; STD N	2190 +/- 951	1165 +/- 369	2242 +/-851	104 +/-23.7	
	max	4030	2000	4190	144,0	
	min	940	600	1104	60,1	
LFeff	average; STD N	271 +/- 186	90 +/- 76	371 +/- 217	15.2 +/- 8.5	
	max	615	300	803	37,0	
	min	36	14	86	2,7	
efficientcy [%]	average; STD N	88 +/-8	93 +/-6	83 +/-10	85 +/-10	
	max	98	98	94	98	
	min	62	75	60	54	
Overall Performance						

99

97

96

90

94

97

98

87

