Repository logoRepository logoEcolib
Institutional
repository
  • Communities & Collections
  • Browse
AAA
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "2-Amino-4-nitrophenol"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication

    Feed-back action of nitrite in the oxidation of nitrophenols by bicarbonate-activated peroxide system

    (Elsevier B.V. , 2016)
    Puiu, Mihaela
    ;
    Galaon, Toma
    ;
    Bondila, Luiza
    ;
    Raducan, Adina
    ;
    Oancea, Dumitru
    In this study it was found that the nitrite anion greatly increases the oxidation rate o fthe substituted phenols by the bicarbonate-activated peroxide (BAP) system at ambient temperature. This feed-back effect was investigated in the BAP oxidation of 2-amino-4-nitrophenol and 4-nitrophenol, where the kinetic analysis showed that the rate determining step was the elimination of a nitro group as nitrite. Complementary oxidation experiments with 2-aminophenol in BAP system, performed in the presence/absence of sodium nitrite confirmed the catalytic role of this anion. High concentrations of nitrite/BAP prevented formation of polymeric species and favoured the degradation to aliphatic fragments such as 3-oxobutanoic and acetic acid. Indirect evidence suggested in-situ generation of reactive oxygen species (ROS), other than hydroxyl, peroxyl and carbonate radicals, during the nitrite/BAP oxidation. Formation of additional ROS – peroxynitrite and nitrosoperoxycarbonate – may account the synergistic action of nitrite/BAP system. The estimated value of the apparent rate constant of the autocatalytic step for 2-amino-4-nitrophenol (kapp = (4.97 ± 0.19) × 103 M−3 s−1 ) demonstrates that fast degradation of this oxidation-resistant phenolic dye is feasible even in ambient conditions. These findings can be exploited for developing clean, cost-effective methods for the removal of phenolic dyes as alternative to current advanced oxidation processes.
      5
ECOIND logoECOIND logo
ECOLIB logoECOLIB logo
ROAR
ECOLIB logoECOLIB logo
Copyright 2025 ECOIND | End User Agreement | Send Feedback | Cookie settings | Privacy policy
DSpace Software Provided by PCG Academia