Repository logoRepository logoEcolib
Institutional
repository
  • Communities & Collections
  • Browse
AAA
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. ECOLOGY AND POLLUTION CONTROL
  3. Articles
  4. Exploring Sustainable Solutions: Dynamic Adsorption, Isotherm Models, and Kinetics of Organic Contaminants on Polystyrene Microplastics
 
  • Details
Options

Exploring Sustainable Solutions: Dynamic Adsorption, Isotherm Models, and Kinetics of Organic Contaminants on Polystyrene Microplastics

Journal
Sustainability
ISSN
2071-1050
Date issued
2024-09-05
Author(s)
Cojocaru, Victor Constantin  
National Research and Development Institute for Industrial Ecology, ECOIND  
Cristea, Ionut Nicolae  
National Research and Development Institute for Industrial Ecology, ECOIND  
Paris, Ana Ioana  
National Research and Development Institute for Industrial Ecology, ECOIND  
Ionescu, Ioana  
National Research and Development Institute for Industrial Ecology, ECOIND  
Chiriac, Florentina Laura  
National Research and Development Institute for Industrial Ecology, ECOIND  
DOI
10.3390/su16177743
Abstract
<jats:p>As the world transitions towards a more sustainable future, it is imperative to develop innovative solutions that address the pressing issue of plastic pollution. Microplastics, in particular, have become a significant concern due to their widespread presence in the environment and potential to interact with toxic pollutants. Organic compounds, which include a variety of harmful chemicals, such as pesticides and other industrial chemicals, are often released into the environment and can readily bind to microplastics. In this context, understanding the adsorption of organic compounds on microplastics is crucial for designing effective strategies to mitigate their environmental impacts. This study investigates the adsorption dynamics of organochlorine pesticides (OCPs) on polystyrene microplastics, exploring the influence of pH and contact time, as well as utilizing kinetic models and isothermal equations to elucidate the adsorption mechanism. The results suggest that the pH level has a negligible impact on the adsorption capacity of PS for OCPs. In contrast, the contact time plays a significant role in the amount of OCPs adsorbed onto the PS surface. Interestingly, a relatively short time of up to 6 h was sufficient to reach equilibrium. The adsorption of OCPs on PS follows a uniform pattern consistent with the Freundlich isotherm model, indicating a multilayer adsorption process. The use of kinetic models to describe the adsorption process was also found to be useful in understanding its mechanism. Specifically, the pseudo-second-order kinetic model proved to be a suitable descriptor for the adsorption process of organochlorine pesticides on PS. This study highlights the importance of understanding the interactions between microplastics and organic pollutants, which is crucial for developing sustainable solutions to mitigate the environmental impacts of plastic pollution, ultimately contributing to a more environmentally conscious future.</jats:p>
Files
Loading...
Thumbnail Image
Name

sustainability-16-07743.pdf

Size

3.42 MB

Format

Adobe PDF

Checksum

(MD5):8d8707a824acd9f1a32869c2679e3115

ECOIND logoECOIND logo
ECOLIB logoECOLIB logo
ROAR
ECOLIB logoECOLIB logo
Copyright 2025 ECOIND | End User Agreement | Send Feedback | Cookie settings | Privacy policy
DSpace Software Provided by PCG Academia